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A number of works have been devoted to the exact or approximate theoretical treatment 
of thermocapillary convection. A one-dimensional model of the motion of a thin liquid 
layer with a linear temperature distribution on its free surface was discussed in [i]. The 
inconsistencies of the treatment of [i] were pointed out in [2]. Taking into account the 
comments of [2], the approximate solution of [i] was generalized in [3]. A closed form 
solution of the equations of free convection for plane-parallel steady flow in a horizontal 
liquid layer with a constant temperature gradient along the layer was worked out in [4]. 
Thermocapillary convection was considered, along with ordinary thermal convection. The 
solution of [4]* was extended in [5, 6] to different boundary conditions for the temperature 
and in [7] to the case of two immiscible liquid layers. The flow of two immiscible liquid 
layers in a plane inclined channel with nonisothermal parallel walls was considered in [8]. 
The effects of a pressure gradient, gravity, and capillary forces on the plane boundary 
between the two liquids were taken into account. Two-dimensional convection in a plane rect- 
angular cell was studied numerically in [9] and in several later papers. When the motion 
is weak the problem can be solved analytically [i0]. An asymptotic analysis was carried 
out in [ii] for a shallow channel and low-intensity convection. The works cited above assumed 
that the liquid is heated from the bottom or through the sides of the container. Steady 
convection for the case of localized heating of a horizontal liquid layer from above was 
stimulated numerically in [12], and the development of convection was considered in [13]. 
Equations describing unsteady thermocapillary convection in thin liquid layers were derived 
in [14] and applied to certain problems. Exact solutions for the steady motion of a liquid 
in a half space subjected to nonuniform heating of its free surface were obtained in [15]. 
Spatially periodic convection induced by periodic transfer of heat from the bulk into the 
liquid layer was considered in the linear approximation in [16]. Heating in a transparent 
liquid can be accomplished by means of absorption of laser radiation. Periodic thermocapil- 
lary flow has been studied experimentally in [17]. 

We consider several other examples of flow due to the thermocapillary effect. 

i. Couette Flow. Consider a horizontal layer consisting of light (0 < y < h I) and 
heavy (-h 2 < y < 0) immiscible liquids (liquids 1 and 2, respectively). The pressure of 
the gas in the region above the layer is assumed to be constant. The free surface of the 
liquid y = h i is characterized by the surface tension ~l. The boundary between the two 
liquids y = 0 has the surface tension ~2. The lower boundaryof the layer of the second liquid 
is a solid surface. Certain kinematic and dynamical conditions must be satisfied on the 
deformable boundaries. The dynamical boundary conditions couple the components of the stress 
tensor [18]. Although the densities Pi,~ and the transport coefficients of the liquids 
are assumed to be independent of temperature, the thermal and dynamical problems are coupled 
by the boundary conditions. 

It can be shown that the boundaries of the liquids remain planes and a pressure grad- 
ient in the horizontal direction is not induced by the thermocapillary motion. The Navier-Stokes 
equation and the energy equation with the appropriate boundary conditions yield the following 
exact solution with a piecewise-linear velocity profile: 

~1 = ~0 -T- Pl~'l g, u2=Uo(l+ t-~7J2), 

*A critical discussion of [4] is contained in [13]. 
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Here ul, 2 are the horizontal components of the velocities; a~,~ =--dal.J dT ; $ is the temper- 
ature gradient along the surface between the two liquids; Yi, Y2 are constants related by 
the equation • == • z~,~ are the thermal conductivities of the two liquids; Xi,2 are 
the thermal diffusivities; cl, 2 are the heat capacities; vl, 2 are the kinematic viscosities; 
u 0 = u(0) is the velocity on the boundary between the two liquids. The solution (i;I) for 
the temperature is identical to that found in [8]; when Yi,2 = 0 this solution reduces to 
that found in [4]. According to (i.i), the flow in the two layers is coupled and the 
velocity field does not depend on the form of the functions 91, 2 . 

Different values of the constants ~ and )1,2 correspond to different heat transfer 
problems. Suppose, for example, that the temperature of the free surface of the first liquid 
is constant ~ @ ?lhl  = 0. Then the velocity in the upper layer is constant (u I = u 0) and 
the solution does not depend on al' and ~i. The flow is induced by capillary forces which 
arise because the surface between the two liquids is not isothermal. 

The inverse effect is also possible where the upper layer flows with a linear velocity 
profile, while in the lower layer the velocity is constant and equal to zero, in view of the 
boundary condition on the tangential components of the velocity at the solid surface. In 
this case (~ 4-a~)~ + a~h~ = 0 and capillary forces on the boundaries of the liquids are 
in opposite directions. The flow regimes in a viscous liquid layer of finite thickness 
with constant velocity are possibly of interest in applications. The motion is in the direc- 
tion of decreasing temperature and upon solidification of such a flow inhomogeneities and 
local stresses in the solid phase will be reduced. 

If ~ = 0 then the dependence of the solution on a2' drops out. The motion is initiated 
by capillary forces on the free surface and the second liquid is drawn into the motion by 
viscous stresses. If ~ = ?2h2, then the bottom of the tank is isothermal and the motion 
is a superposition of the flows generated by the two constant shear stresses on the moving 
boundaries of the layers. 

In the case when the bottom of the tank y = -h 2 is inclined by an angle ff to the hori- 
zontal, the form of the solution (i.i) changes. The temperature field is given by the 
previous equations, but quadratic terms in the coordinates appear in the expressions for 
the velocities. These additional terms are due to the presence of body forces: 
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(g is the acceleration of gravity, and the velocity u 0 on the boundary between the two liq- 
uids is found from the second equation. The conditions under which the capillary force 
plays the dominant role are apparent from (1.2). The solution (1.2) is of interest in con- 
nection with the Flout process in the manufacture of glass, as noted in [7]. In this case 
there is a leakage of the glass layer on a layer of molten tin. 

2. Steady Spatially Periodic Convection. A horizontal layer of incompressible liquid 

is bounded from below by the bottom of the tank y = -h and from above by a free surface at 
y = 0. In the absence of thermal disturbances the liquid is at rest, has a constant tempera- 
ture, and the equilibrium pressure distribution P0 = -PgY + const. 

We consider plane steady-state thermocapillary motion in the layer induced by a spa- 
tially periodic temperature disturbance T = AT cos kx on the free surface of the liquid. 
As we shall see the motion differs from that studied in [16], where the convection was in- 
duced by a spatial modulation of heat transfer from the bulk. A surface thermal disturbance 
takes place, for example, in the interaction of laser radiation with an opaque liquid. 
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We linearize the equations of motion and the energy equation about the initial equilib- 
rium state. Then it is possible to obtain simple analytical solutions. The boundary condi- 
tions are formulated assuming that the surface of the liquid is not deformed by thermocapil- 
lary motion. This means that only tangential stresses on the surface are taken into account, 
while capillary pressure and other effects associated with the curvature of the surface 
are neglected. However the pressure gradients induced by the motion of the liquid are di- 
rectly related to the curvature of the free surface [2]. Therefore the calculation of the 
pressure field in the approximation of a plane surface is of little interest and it is neces- 
sary to eliminate the pressure gradient from the equations of motion. Then the components 
of the velocity satisfy the biharmonic equation, while the temperature disturbance T(x, y) 
and the vorticity ~(x, y) satisfy Laplace's equation. 

A solution of the problem with period 2~/k along the x axis can be constructed with 
nonlinear convective terms taken into account using regular perturbation theory with the 
perturbation AT. This wan done in [19] in a treatment of thermogravitational convection. 
However, this is not convenient for our purposes. The solution given below, which is 
valid when the amplitude of the temperature modulation on the boundary of the layer is suf- 
ficiently small, is the first term of the perturbation expansion: 

T = O(y) cos kx ,  u = ] '(y) s in  kx ,  v = - - k f ( y )  cos kx ,  

.Q = f ( g )  s in  kx ,  Y = k ~/ - ] ' ' ,  (d2/dg 2 - k 2 )  2 ] =  O, (d2/dg ~ - k2) 0 = O, 

](0) -= ] ( - -h )  = ] ' ( - - h )  = O, ]"(0)  = a ' A T k / ( v p ) ,  

o(o) = AT,  O(- -h)  = O. 

( 2 . 1 )  

Here u is the horizontal component of the velocity and v is the vertical component. It is 
assumed that the temperature disturbance vanishes on the lower boundary of the layer. Ac- 
cording to (2.1), the streamlines are determined by the equation I/sin kx! ~ C. The motion 
of the liquid is a circulation along closed trajectories inside separate cells of length 
Ax = ~/k. The solution of (2.1) is 

co'AT r s h  ] = ~ ig kh  sh (kh q- kg) - -  kh  (g § h) sh kgl ,  

O = AT sh(kh ~ kg) 
shkh , a = s h 2 k h - - 2 k h ,  

F - -  2os [kh ch kg - -  sh  kh  ch (kh  ~, ky)]. 'vpa 

(2.2) 

According to (2.2), F(-h) ~ 0 if h is finite. In the limit h § ~ the solution takes on the 
particularly simple form 

cdAT - O = A T e  ky, F a'AT--kehY, f = ~ Y  e~y" (2 3) ~P ~ �9 

3. Oscillatory Thermocapillary Motion. We consider an example of plane flow depending 
explicitly on the time. Let an imcompressible liquid occupy the half space y < 0. We con- 
sider oscillatory thermocapillary motion caused by a periodic temperature disturbance T = 
AT cos kx x cos mt on the free surface of the liquid. The problem is solved in the linear 
approximation, as in Sec. 2. We consider only the thermocapillary mechanism of convection 
and neglect buoyancy forces. This question will be discussed after obtaining the solution. 
In constructing the boundary conditions we assume that the surface of the liquid is undeform- 
able due to capillary motion. This eliminates from the problem the excitation of surface 
waves and (in view of the incompresibility condition) internal waves. The disturbances 
of all quanitities must vanish in the limit y + -~. We assume a solution of the form (2.1) 
where 0, f, and F are now functions of t and y. The functions T(x, y, t) and ~(x, y, t) 
satisfy the heat conduction equation. The solution simplifies considerably because in a 
semi-infinite region a second boundary condition is known for ~ in the limit y § -~. There- 
fore we can first obtain the solution for ~ and then, after using the relation (2.1) between 
f and F, find f(y, t) from a second-order equation. We then obtain the expressions 
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0 = ATe~u cos (my q- o~t), F a'iTk eqy cos (m~y + o)t), vp 

] =a'ATk [e61y s i n  ( m l y  -}- (or) - -  e hy s i n  o)t], 
9co 

26"~ = @4 q_ 09./%~)1/2 q_ k2, 2 m  2 = (k 4 + (02/%~)1/'- _ k ~-, 

25~ = (1r _}_ 602/~;2)1/2 _}_ k2, 2m~ = (k a %- o)e,/v2) 1/2 - -  k 2. 
(3.1) 

The solution (3.1) reduces to (2.3) when ~ + 0. It follows from (3.1) that the oscillations 
of the different quantities are shifted in phase with respect to one another, and the phase 
shift depends on the y coordinate. 

If instead of the temperature we specify the heat flux density q on the surface of 
the liquid, and we assume that it is described by the same equation as above, then the solu- 
tion differs from (3.1) by the phase shift A~ =arctan (m/5) and by the substitution AT § 
Aq/• 4 @ m2/~2)I/4 . Therefore temperature oscillations with the same amplitude in different 
liquids correspond to different values of the heat flux. The amplitude of the velocity 
oscillations is proportional to the amplitude of the thermal disturbance and, like the phase 
shifts, depends on the thermal properties of the liquid. 

The length scale in the horizontal direction is specified by the boundary condition. 
The solution (3.1) describes disturbances which damp out exponentially with depth into the 
liquid and resemble the solution of the well-known Stokes problem [18]. The penetration 
depths for the different quantities are in general different. For the velocity components 
the characteristic vertical length scale (since 61 > k) is ~ k -l, as in the horizontal 
direction. For large k, when 6, 61 = k, the penetration depths for temperature and curl 
of the velocity are also quantities ~ k -I But for small k, when 5~(~/%)I/2>>k, 51N(~/v)i/2>>k 
the penetration depths are small in comparison with k -I 

It is known (see [4], for example) that thermogravitational convection can be neglected 
if the thickness of the liquid layer does not exceed a critical value h,. Hence when kh, >> 1 
the thermocapillary mechanism of convection will play the dominant role. 

It is not difficult to write down conditions for the applicability of our treatment. 
When 

~'Ark ~ ~'aTk/i,  P r ~  t, 
(o ~>> p , o)>> vP [Pr ,  P r > t  

the neglected nonlinear terms will be small in comparison to the time derivatives or diffu- 
sion terms, respectively. Here Pr is the Prandtl number. According to (3.1), the response 
of the system to an oscillatory disturbance on the boundary is nonresonant. This is due 
to the assumed "rigidity" of the free surface in the transverse direction. In actuality, 
heat oscillations on the surface of the liquid will excite waves and in some cases lead 
to large-amplitude wave motion. Therefore our approach is applicable only when we are far 
from resonance. 
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